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Abstract The average residence time of liquid flowing over the surface of a rotating cone was
determined numerically. The development and propagation of the free surface flow was simulated
using the volume of fluid (VOE) method. The numerical simulations were validated using
laboratory experiments using soy-oil as a model liquid, and approximate analytical solutions of
the simplified governing equations. The numerical simulations revealed the importance of the
cone rotation frequencies and the minor influence of the cone angles on the rvesidence times.
Higher liquid throughputs produced smaller vesidence times. As expected, an increasing cone size
results in proportionally higher residence times. Furthermore, it was established that even for
small cones with a characteristic diameter of, e.g. less than Im, relatively high (~1 kg/s)
throughputs of liquid arve possible. It appears that the combination of the decreasing layer
thickness and the increasing size of the numerical grid cells with increasing radial cone coordinate
hampers the numerical simulation of this system.

Nomenclature

= dimensionless 7 velocity component
= velocity m/s

= volume m®

= dimensionless 6 velocity component
= dimensionless ¢ velocity component

c = constant

d = distance, layer thickness m
d, = outer cone diameter m

f = function

F = fraction of volume eeck
Fr = Froude number defined by equation

(16¢)

= Dirac function
dimensionless film thickness

g = gravitational acceleration m/s? angular spherical coordinate rad

ij = cell indices in 7-, f-direction rotational spherical coordinate rad

M = mass flow kg/s dimensionless 7-coordinate

n = rotation frequency 1/s = dynamic bulk viscosity Pa s

n = normal vector = dynamic shear viscosity Pa s

b = static pressure Pa = kinematic viscosity m%/s

P = dimensionless static pressure = density kg/m® .

Qo = volumetric flow rate m®/s = dimensionless distance from cone wall

@Qy" = dimensionless volumetric flow rate =stressPa )

7 = radial spherical coordinate = angular spherical coordinate
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angular frequency Hz
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Sub- and superscripts o} = outflow, outlet
a = atmospheric S = surface
1 = inflow, inlet W = wall, half top angle of cone

1. Introduction

Rotating cones have important applications as, e.g. liquid atomizers in oil
burners (Hinze and Milborn, 1950) and liquid film evaporators (Bruin, 1969).
Recently, they have also been used as reactors for rapid thermal processing of
solids, e.g. for the flash pyrolysis of biomass (Wagenaar et al., 1994a, 1994b) or
polymer (Westerhout, 1998a, 1998b) particles. In this case, sand mixed with
reactive particles, serves as a heat carrier and is used to prevent fouling of the
cone wall. The main advantages of such systems are short residence times,
high heating rates of the reactive particles and the absence of carrier gas since
the rotation of the cone drives the particle transport.

In the latest design (Janse ef al., 1999), internal recirculation of sand is
realized by partly submerging a cone with through-flow openings at its base
into a fluidized bed of particles (i.e. sand and reactive particles). The particles
flow via these openings into the cone and move upward along the inner cone
wall along spiral trajectories. In the meantime, the reactive particles are
converted to mainly gaseous products. When the sand passes the upper edge of
the cone wall, it falls back into the fluidized bed. This reactor design allows for
potentially thick, dense layers of particles to flow at high flow rates. A
schematic representation of the prevailing gas-solids flow inside the rotating
cone reactor is shown in Figure 1.

For a reliable design of such rotating cone reactors, the residence times and
mass flow rates of the particles need to be known. The residence times
determine the maximum allowable particle size of the feed and therefore
influence the grinding costs. However, they are a complex function of the cone
dimensions and rotation frequency, and the mass flow rate.

Fluidized bed of solid particles

Muidizing gas

il
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Figure 1.

Internal recirculation of
sand in the rotating
cone reactor
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The only existing laboratory experiments were performed in two pilot plants of a
rotating cone reactor with fixed dimensions (Wagenaar ef al., 1994a, 1994b; Janse,
1998). A thorough investigation based on laboratory experiments is not feasible,
due to the expenses involved in creating and operating large numbers of rotating
cones for the full range of parameter variation. In addition, it is very difficult to
measure the layer thickness accurately, due to the combination of small layer
thicknesses, small particle densities in the upper boundary layer and the bouncing
nature of the particle movement. Consequently, theoretical models and numerical
simulations of particle transport along rotating cone walls are necessary.

The only existing numerical simulation of particle transport in rotating cones
was developed for a small number of bouncing particles (Wagenaar et al., 1994b).
Recently, discrete particle tracking simulations in Cartesian coordinates have
been developed that take into account interactions between large numbers of
particles and particle size distributions (e.g. Hoomans et al., 1996, 2000). However,
due to computational expenses these simulations cannot adequately describe the
observed thick, dense layers containing ~106 to ~108 particles.

In a more practical approach, the gas and solid particle mixture can be
described as two separate, fully interpenetrating continuum phases (e.g.
Kuipers et al., 1992). However, such a description is expected to be highly
complex because of the free surface boundary conditions and spherical
coordinates. Alternatively, as a first approximation, it can be assumed that the
thick, dense granular flow is similar to the flow of a viscous, non-Newtonian
fluid. The advantage of this one-fluid approach compared to the two-fluid
approach is that it is conceptually simpler and easier to solve.

Ideally, analytical solutions of the governing equations of mass and
momentum that describe the system are preferred. However, the development
of analytical solutions for non-Newtonian fluid flows with free surface
boundaries, partial slip condition at the cone wall and complex inflow and
outflow conditions in spherical coordinates, as can be expected for sand flow in
a rotating cone, is not realistic due to the complexity of the system. Existing
approximate analytical solutions for fluid flow in rotating cones (Bruin, 1969)
are based on highly simplified Navier-Stokes equations. They are only valid for
Newtonian fluids with a no-slip flow condition at the cone walls, and only for
special cases (e.g. very low, intermediate and very high rotation frequencies).
Therefore, these analytical solutions cannot be used as a starting point for the
description of sand flow, which is the ultimate goal of this study. In contrast,
numerical simulations do not have these disadvantages, since their extension to
other rheologies and boundary conditions is straightforward. However, to the
best of our knowledge, numerical simulations of fluid flow in a rotating cone
with free surface boundaries in spherical coordinates do not exist. Therefore, a
method is developed to describe Newtonian fluid flow using finite difference
techniques in combination with free surface tracking methods in spherical
coordinates. The numerical simulations will be validated by laboratory
observations using a number of different rotating cones and analytical solution
for Newtonian fluid flow. After validation, the method will be extended to



non-Newtonian fluids and partial slip condition at the cone walls, and validated
using laboratory observations of sand flow in rotating cones. These numerical
simulations will then serve as the basis of much more comprehensive
numerical simulations of two-phase sand-gas flow.

2. Metholodogy

Within the framework of the one-fluid approach, the granular flow prevailing
in a rotating cone is governed on a microscopic scale by a set of mass and
momentum conservation equations. These equations are derived from the
general conservation equation applied to mass and momentum transport and
simplified by making suitable approximations. We compute the transient
solution of these equations, while only the final, steady state solution will be
compared to the experimental observations and the analytical solutions. The
conservation equations are supplemented with initial and boundary conditions.
An additional complication that arises here is the fact that the free-surface
location and associated boundary condition enforcement has to be dealt with.

2.1 Model assumptions

First, assumptions are made to simplify the governing mass and momentum
conservation equations. It should be noted that the flow domain is restricted to
the region inside the rotating cone. To describe this system, spherical
coordinates in three dimensions (#, 8 and ¢) are appropriate where in addition
the time coordinate (¢) is required to study transient effects. The origin of the
spherical coordinate system is situated at the virtual tip of the cone. Therefore,
the spherical coordinates have the ranges 7, < » < 7,, 0<6<46, and
0 < ¢ < 2 as indicated in Figure 2. In this study it will be assumed that the
gas-solids flow in the rotating cone is symmetrical in the direction of rotation
and therefore all quantities describing the flow are independent of ¢

)
350 =0 1)

It is assumed that the mixture density (i.e. porosity) is constant and that the
mixture layer is at least several solid particles thick. If in addition a tight
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Figure 2.
Applied spherical
coordinate system
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momentum coupling between the gas and solids phase exists, the gas-solids
mixture can be treated as a single fluid, with a constant density p related to the
constant porosity €, and the constant density of the solids p, and the gas p,

p=ps(l =€)+ pge. (2)

The bulk gas is treated as a void, having no properties except that it takes up
the space left by the fluid and that it possesses an atmospheric pressure. The
characteristic quantities of the single fluid are the 7-, 6- and ¢- components of
the velocity vector and the internal pressure. The location of the free surface
between the fluid and the void is marked and traced according to the volume of
fluid (VOF) method, as will be explained in section 2.2. In terms of the internal
viscous stresses, the single fluid is assumed to behave like a Newtonian fluid.
Finally, the gravitational force acting on the mixture of gas and solids is
expressed by the components of the governing gravitational constant

g = (—gcosb,gsinb,0) (3)

2.2 Model equations

When the assumptions mentioned above are applied to the mass and
momentum conservation equations, their simplified versions specific to a single
fluid flow in a rotating cone are obtained. They are presented below in vector
form (Bird et al., 1960) for the conservation of mass

p(Vv) =0 (4)
and the conservation of momentum
0
o2 s 0+ Vp + V7]~ pr =0 6)

where v is the flow velocity, p the pressure and 7 the stress tensor. As
mentioned before, the single fluid is assumed to behave like a Newtonian fluid.
Therefore, the stress tensor is given by

T:—N{VU+VUT}+(§N—>\)(V'”)5’ 6)

where 1, and \ are the dynamic and shear fluid viscosities, respectively.

The application of a single fluid approach makes it necessary to define and
trace the Eulerian location of the free surface. In our study the VOF method
(Nichols et al., 1980; Hirt and Nichols, 1981) was applied to deal with this
complicated problem. Within the framework of the VOF method the fractional
amount of fluid F'is invoked to track the interface in the computational domain.
The fractional amount of fluid distinguishes the fluid from the void and is
defined as F = 1 if only fluid is present at the location (7, ) and F = 0 if only
void is present at location (7, 0). The free surface is defined by the discontinuity



in the fraction of volume, as shown in Figure 3. The development of the free
surface is propagated as a Lagrangian invariant described by the partial
differential free surface equation

DF OF

W—E—l—(V'Fv)—O. (7)
The implementation and application of the VOF method in spherical
coordinates is described in Janse et al. (2000) in detail.

2.3 hutial and boundary conditions

The initial conditions for £ = 0 are described by zero values for the 7-, 8-, and ¢-
velocity components, and the pressure v, = vy = vy = p = 0 (i.e. fluid at rest).
The initial fraction of volume F'is prescribed, with unity for the space occupied
by the fluid and zero for the space occupied by the void F' = {0,1}. The cone
inlet at » = #; 1s described by a prescribed mass flow rate

Oy
M) = 2n J 0,.(0) sin 60 ®)

6=0

from which 7-direction inflow velocity component v,. is extracted. A tangential
free-slip condition for the - and ¢- velocity components dvy/0r = dv,/Or =0,
and a zero-gradient condition for both the pressure and the fraction of volume
Op/0r = OF /Or = 0 are used. The continuative outlet at » = 7, implies a zero-
gradient condition for the 7-velocity component dv,/0r, a tangential free-slip
condition for the #- and ¢-velocity components = dvg/0r = 0v,/0r = 0, and a
zero-gradient condition for the pressure 9p/d, = 0. The prescribed fraction of
volume is F' = 0 for a non-outflowing system and /' = 1 for an outflowing system.
The fully continuative central symmetry line at # = 0 is described by a zero-
gradient condition for the 7-, 6- and ¢-velocity components, the pressure, and the
fraction of volume Jv,/00 = Ovy/00 =0v, /00 = 0p/00 = OF /0§ = 0. The
impermeable no-slip rotating cone wall is described by zero values for the 7- and
#-velocity components v, = vy = 0, ¢-velocity components equal to the velocities
of the rotating wall

vy = Qrsin by, 9)

and a zero-gradient condition for the pressure and the fraction of volume
0p/08 = OF /09 = 0. The coordinates of the free-surface boundary are expressed

e - Fiuid F=10 :

frae - sLkace

fluid F=1
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Figure 3.

Volume of fluid method
for free surfaces:
definition of fraction of
volume F
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Figure 4.
Continuous (left) and
discrete (right)
coordinates

by either their 7-coordinates as a function of 6 as R(6), or by its #-coordinate as a
function of 7 as ©(r). The boundary conditions for the free surface are described
by a zero-gradient in normal direction for the tangential velocity v, /0n = 0 and
a prescribed atmospheric pressure p = p,. The pressure condition incorporates
the inviscid fluid conditions for the normal stress.

2.4 Numerical simulations

The conservation equations for mass and momentum (equations 4 and 5) are
discretized according to the semi-implicit finite difference approximation for
staggered fixed Eulerian grid cells. An example of such a grid is depicted in
Figure 4. Subsequently, the fluid flow variables are computed iteratively via a
pressure correction technique employing a whole field solution strategy
(Kuipers et al., 1992; Hirt and Nichols, 1981).

Due to the explicit treatment of momentum convection and viscous
interaction terms, the time interval Af must meet the Courant convective
stability condition and the viscous stability condition. The convective stability
condition states that the fluid is not allowed to move through more than one
grid cell per time interval At

At < min ﬂvﬂ o
Z.G[L' Almax] ‘2}7,1]‘ ‘097117|
]G[lJmux]

whereas the viscosity stability condition states that the viscous momentum is not
allowed to be transported through more than one grid cell per time interval A¢

2. 2
Al < min %%3 (11)
i€Line \ A2 + (r;A0)* 1

to ensure numerical stability. Both conditions should be fulfilled over the entire
computational domain occupied by the fluid. At the singular point 7; = 0, the point

B

. -
L o ¥ i
s, ' 1 I T I ._. ! '|'r

4 F



r; = Ar is used in the above expression and a safety margin is taken to ensure
stability for this particular point. The singular symmetry line 8 = 0 (the central
axis of the cone) is treated with special care. This singular point affects the
convection and the diffusion term of the 8-component and the diffusion term of the
#-component of the momentum conservation equation. The relevant parts of these
terms are set to zero for siné = 0.

At the cone inlet relatively thick layers develop, suggesting a coarse grid in
the 6-direction. However, at the cone outlet, relatively thin layers are encountered,
requiring a fine grid. Therefore, a variable grid size approach is used to improve
the calculation efficiency. Typically, a grid size of 100 cells in the 7-direction and
six cells in the #-direction is applied. The reason for the small number of grid
cells in the #-direction will be explained later. The calculations are performed on
a personal computer with an Intel Pentium Pro 200-MHz processor. Typical
computation times are in the order of six to ten hours.

2.5 Experimental set up

To validate the numerical simulations, experiments were conducted in which
the thickness of a flowing liquid layer was measured as a function of the radial
coordinate along the cone wall for several cone geometries. Since the cone angle
and the inlet diameter D; are the two most important cone parameters, they
were varied systematically. Four different wall angles 0,, and two different
inlet diameters D; and cone heights H were applied, yielding a total of eight
cones. For practical purposes, only the range of approximately 20 < 6, < 50° is
interesting. The dimensions of the rotating cone are fixed by specifying one
more cone dimension, for instance the outlet diameter D, or equivalently the
cone height H. To measure the thickness of the liquid layer, it is desirable to use
a cone with an easily accessible top and inside. Therefore, the cone is open at
the top and the motor driving the rotating shaft is installed above the cone. The
rotating shaft is extended to the bottom of the cone and is then attached to the
cone wall with three bars. In this way, vibrations induced by the imperfections
of the cone are largely suppressed. A schematic view of this design is depicted
in Figure 5, and the dimensions of the cones used are presented in Table 1.

ratating shaft

altmchment bar
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Figure 5.

Rotating cone with
attachment bars: side
view (left) and bottom
view (right)
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Table 1.
Dimensions of cones

The liquid used should preferably simulate the gas-solids flow and thus have a
density and viscosity of the same order of magnitude as the gas-solids mixture.
For comparison, the density of a sand-air mixture with a porosity of ~0.5 is
~1,200 to ~1,300 kg/m>. Concerning the viscosity, rheological work with a
ballotini-air system (Schuiger] et al., 1961; Grace, 1977) indicated that at low
shear rates Newtonian behaviour can be expected while typical values for the
(solid phase shear) viscosity are ~0.5 to ~1.2Pa s. An extensive search for a
suitable liquid initially resulted in the application of glycerin which is a highly
viscous fluid (1.5Pa s at lbar and 293K) with a moderately high density
(1,260 kg/m®). The main drawback of glycerin is its hygroscopic behavior
towards water in the atmosphere with dramatic effects on its properties and
thus on the experimental results. Alternatives for glycerin are paraffin and
vegetable oils. Due to the low costs and its availability, much less viscous soy
oil is applied in the experiments. The density of the oil is 991kg/m® and the
dynamic viscosity is 0.04 Pa s at 1bar and 293K.

A simple yet effective arrangement is applied to conduct the experiments.
Liquid held in an inner container is transported along the cone wall, falls into a
larger outer container and is pumped back to the inner container. In this way
the mass flow rate of the liquid is easily measured. The rotating cone is
mounted above an inner transparent acrylic container that is placed inside a
larger outer container. The motor that drives the cone is assembled above the
cone in a table-like arrangement. The liquid contained in the inner container is
transported by the cone, is slung against the wall of the outer container and
falls to the liquid level in this container. From the outer container, the liquid is
pumped back by a gear pump to the inner container via an opening in the wall.
The liquid layer thickness is measured with a screw micrometer, that is
arranged in such a way that it points perpendicular to the cone wall. The point
at which it brushes the liquid layer surface and the point where it brushes the
cone wall is measured and the difference is assumed to be equal to the layer
thickness.

Although the visual measurement of the point at which the screw
micrometer just brushes the liquid layer is not straightforward, the
reproducibility of all the measurements of the liquid layer thickness was
typically within 2 per cent. From a laboratory analysis of regularly taken
samples, the exact density and viscosity at the operating temperatures were

Oy D; D, H
Cone o 10°m 10° m 10° m
A 45.0 150.0 440.0 145.0
B 375 150.0 3725 145.0
C 30.0 150.0 3174 145.0
a 45.0 50.0 146.8 484
b 375 50.0 124.3 484
c 30.0 50.0 105.9 484




obtained. A constant liquid temperature was maintained by water-cooling the
contents of the outer container. The arrangement of the apparatus is depicted in
Figure 6.

2.6 Analytical solutions

2.6.1 Very low angular cone velocities. When the cone rotates at a very low
angular frequency, the system can be described as a fluid that resides in a
conical container rotating about its own vertical axis. Due to the low rotation
velocity, the hydrodynamic character of the flowing liquid shows resemblance
with the rotation of a rigid body. This problem is solved along the lines of the
solution of a rotating cylinder that rotates at a very low angular frequency
presented by Bird et al. (1960). The complete solution procedure can be found in
Appendix 1 and results in the following set of equations to determine the
location of the free surface either as a function of » or 6 (for the symbols and
dimensionless variables, refer to Appendix 1):

gcosl 2027, ¢ 1
s=————1—4/1 ~(1-— 12
’ 02sin® 6 ( \/ + g cos? 6 (12)
1 meabor
wabar augply
Ul
clear plexiplass contaner
d
1.
wabar coaling
I

plastc condainar

Hydrodynamics
of liquid flow

395

Figure 6.
Arrangement of
experimental apparatus
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The orientation of the free surface boundary is derived by differentiation of the
396 free surface boundary equation (equations (12) and (13)) with respect to # and 7,

respectively. This derivation and the resulting lengthy equations will not be
presented here. The free surface boundary is oriented along # for

1o,
rs 00~ ° Or

(14)

and along 6 otherwise.

2.6.2 Very high angular cone velocities. At high angular frequencies,
transport of fluid through the cone prevails, in contrast to the previous
situation. This problem has been studied earlier by Bruin (1969) nearly
three decades ago but unfortunately his paper contained a number
of typographical errors. Therefore, we present here the correct
solution, which differs slightly from Bruin’s solution. For details, see
Appendix 2.

Bruin (1969) introduced a scaled dimensionless rotation frequency number

Q=" (15)

and obtained for very high values of Q (e.g. 20, recommended by Bruin) the
following solution for the different velocities and pressure:

r-velocity component:

U=— Sfin = <sin O — %) (670 — Ypo?) (15a)

#-velocity component:
Wty <sin2 0o g;f) (57° ~ Yo' —2(6")%5) (15D)

¢-velocity component:
y=_2 = (3 sin® 0, — Sirﬁ“’) (Yot 0? = Yo®) (15¢)

(o) 2



pressure:
P = Pl—Pa = (cos Oy + SIE‘HW> (67 — o) (15d)
p(nw) 2wr sin 0, r
with
r-coordinate:
’
n= 7 (163)
f-coordinate:
- (“) "y (16b)
7= 12
Froude number:
2 .
Fr =Y ’ZH O (16¢)
The dimensionless film thickness
1
+_ (¥ o
5t = (V) d, (17)

can be derived from the conservation of mass over a cross section of the liquid
film (equations (A2)-(A19))

5 36y
cos Oy

6t = —————
(sin@w - T Fr )

(18)

with
Qf = il . (19)

1
2172 sin? Oy (1w) /2

2.6.3 Intermediate angular cone velocities. Bruin (1969) also presented the
solutions for intermediate angular cone velocities (2 > 1).

Bruin first derived expressions for the U and W velocity components, and
subsequently solved for the V velocity component and the pressure P. For
brevity, the solution is presented below while the complete mathematical
procedure can be found in Bruin’s paper.

1
Uln, o) = 2sin 6

F(n)(& — sinh Ao sin Ao) (20a)
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1

W(n,o) = en HWF(n)(fl- —cosh Ao cos Ao + 1) (20b)
. cos Oy
V(n,o) = <3/2 sin 6, — —) Ir (o, 67)+
Fr '
9 (20c)
n{. CcosOu\y o "
5 (sm Oy 7 )X,(n, 6 )ey(o,67)
1 20 sin 6
P= F Ve — & (6T))—
s PO (2% )6 — 667
(sinh Ao sin Ao — sinh A sin A6™) (20d)
+ 2 cos Oyl (0,67)) + <cos Oy + %) (6" — o)

with
A = 4/sinfy (21a)

cos O,
Fr

F(n) =sinf, — (21Db)

& = sin 2\6" sinh Ao cos Ao + sinh 2\8" cosh Ao sin Ao (21c)
T cosh 2\t 4 cos 2D\6+ ¢

sinh 2M\6" sinh Ao cos Ao — sin 2A\8" cosh Ao sin Ao

§ = cosh 2A\61 + cos 26+

(21d)
The relatively lengthy expressions for Ir,(c,6"),Z(n,6"),I,(0,6") and
Ir (0, 6") are defined in Appendix 3. Finally, the thickness of the film along
the cone wall can be computed from

sinh 2\61 — sin 2\6*
(n)

J— 3 +
cosh 2\6* + cos 2)\6+> = 2sin Oy (1 + M)y - (22)

3. Results and discussion

3.1 Analytic solutions validated by experimental observations

The comparison between the analytical solutions and the experimental
observations is presented in Figures 7(a)-(d) in terms of the layer thickness
versus the dimensionless cone coordinate 7 (as defined by equation ((16a)). The
value of the parameter €2, which is a function of the cone dimensions, inlet
volumetric flow rate and cone rotation frequency increases from 13.7 in Figure
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7(a) to 49.3 in Figure 7(d). The comparison in the intermediate high angular
frequency regime is shown in Figures 7(a) and (b), while the solution pertaining
to the very high angular frequency regime is presented in Figures 7(c) and (d).
Because of the implicit expression for the layer thickness in the intermediate
high regime (equation (22)), this parameter was computed numerically using
the Newton-Rapson technique (Press et al., 1986). For comparison, the solution
of Bruin (1969) was also added to Figures 7(a)-(c) to show the differences
between his solution and the solution as presented in this work. The solution of
Bruin (1969) underestimates the thickness of the film.

A physical situation, which should belong to the very high angular
frequency regime of Bruin (1969) is shown in Figure 7(d). However, it is clear
that the computed layer thickness is too low in comparison with the
experimentally determined layer thicknesses. The intermediate high solution,
which is also presented in Figure 7(d), shows much better agreement; therefore,
it seems that the criterion of Bruin (1969) to discriminate between the two
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Figure 7.

Comparison between
analytical solutions and
experiments
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Figure 8.

Difference between
intermediate high and
very high angular
frequency

”»

hydrodynamic regimes (“intermediate high” and “very high” angular cone
velocity) by using a value of Q = 20, is in some situations not adequate. To
clarify the differences between the solutions in the intermediate high angular
cone velocity regime and in the very high regime, the layer thickness, computed
from equations (16a) and (18), is plotted in Figure 8(a) and (b) as a function of 2
for two different values of 7. It can be concluded from both figures that a value
of Q = 40 is a better criterion than Q = 20 to distinguish between the two
hydrodynamic regimes. The differences in layer thickness between the very
high and intermediate high angular frequency regime are less than 5 per cent
for Q > 40.

A remarkable feature in the experimental data points shown in Figure 8 is
the low value of the film thickness at n = 1.26. Probably this is caused by a flow
outlet effect. The direction of the 7-component of the velocity of the film is
changed immediately after reaching the upper edge of the cone from along the
cone wall to an outward oriented direction due to the strong centrifugal forces.
It is likely that the very high speed of the liquid just outside the upper edge of
the cone drags liquid that is still inside the cone resulting in higher velocities.
Consequently, this results in a lower film thickness.

3.2 Numerical results validated with analytical solutions

The numerical results were validated thoroughly using analytical solutions
obtained for flow between two concentric spheres (Bird et al., 1960), and cone
and plate viscometers (Bird ef al., 1960). The agreement between the results
obtained with the numerical model and the analytical solutions was within 1
per cent.

Subsequently, approximate analytical solutions for flow in rotating cones,
based on the work of Bruin (1969), were used to validate the numerical results.
The average liquid residence time 7 was used as a criterion. It is a function of
the mass flow rate, the density and the volumetric hold-up, and can be
computed from
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The volumetric hold-up (i.e. the volume of the liquid layer) V'is a function of the
integrated layer thickness with respect to the relevant coordinates

V= 7 /6 7V%in0drd9d¢ (24)

(b:O 0=0,, r=r;

By integrating in the ¢-direction and substituting the film thickness d(#) that is
equal to 7df into equation (24), it is rewritten to

V= 27r/d(7)7’sin9d7f (25)

The parity plot of the residence times that were simulated numerically and
obtained from the approximate analytical solution is presented in Figure 9.

It appears that some discrepancies, sometimes up to 20 per cent, exist
between the numerical results and the analytical solution. These discrepancies
are due to imperfections of the numerical model that are especially profound for
thin films. To explain this, a typical example of the computed film thickness as
a function of the radial coordinate is plotted in Figure 10. The film thickness
shows some peaks, which are not feasible from a physical point of view.
Thorough checking of the computer algorithms revealed that these peaks are
due to an inaccurate approximation of the pressure calculation at the surface of
the very thin flowing layer, which is sometimes only a few tenths of a mm thick
(see for example Figure 10). The film thickness peaks occur, from a numerical
point of view, at transition points where the fluid layer thickness, expressed in
terms of number of grid cells in the #-direction, changes. The influence of these
peaks on the residence time will be more severe for thinner layers that occuring
at, e.g. high rotational speeds. This effect can be suppressed by reducing the
number of transition points, which is equivalent to reducing the number of
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Figure 9.

Parity plot of the
residence time of fluid
elements on the cone
wall as calculated with
the numerical model and
the analytical solution
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Figure 10.

Typical example of the
film thickness as
computed from the
analytical solutions
versus the radial
coordinate

Figure 11.

Influence of the cone
rotation frequency on
the average residence
time of fluid elements on
the cone wall derived
from experimental film
thickness and equations
(14)-(16) (0, = 45°)

computational cells in the 6-direction for a given physical situation. In addition,
the spherical coordinates that are used to describe this system complicate
matters considerably: for increasing #-coordinate, the width of the numerical
grid cells in the 6-direction increases. At the same time, the layer thickness
decreases for increasing 7-coordinate. As a result, it becomes increasingly
difficult to capture the layer within a sufficient number of grid cells, without
creating instability problems (equations (10) and (11)) at the cone inlet. A more
detailed analysis of this problem is presented in Janse et al. (2000).

3.3 Numerical simulations
Numerical simulations have been performed to investigate the influence of the
cone top angle, rotation frequency and characteristic cone dimensions on the
average residence time on the cone wall. During the simulations, the length of
the cone wall was fixed (7; = 0.15m, », = 0.35m), together with the physical
properties of the medium, which were already presented in the previous
section. The influence of the cone rotation speed and mass flow rate on the
experimentally determined average residence time of fluid elements is
presented in Figure 11.

As can be expected, the residence time decreases with increasing cone
rotation frequency. The influence is highest at the lower frequencies, while at
the higher frequencies the cone rotation has a limited influence. It seems that at
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the higher frequencies (and thus higher centrifugal forces) the influence of the
no-slip boundary condition at the wall on the thinner films (with increasing
cone speed) is becoming more pronounced. Furthermore, the effect that an
increase in mass flow rate induces also a decrease in average residence time,
can be explained by the fact that due to continuity requirements an increase in
mass flow rate can only be enforced by an increase of the fluid inlet velocity. In
other words, because the calculation domain in the #-direction is not changed at
varying mass flow rate, the inlet velocity in #-direction varies also. We have
chosen for the approach of constant layer thickness at the inlet (implying a
changing boundary condition for the liquid velocity), instead of constant inlet
velocity; in our experimental work we imposed a mass flow rate to the cone
wall. To mimic the simulations as much as possible the situation that a higher
mass flow rate is generated by increasing the submersion depth of the cone and
in this way force more liquid to the cone inner side, the layer thickness is kept
constant near the inlet.

Very important for a reliable cone design is the cone angle, because this
parameter not only influences the residence time on the cone wall, but also
influences the overall size of the equipment and the overall strength of the
rotating parts (i.e. the type of material). The effect of the cone angle on the
average residence time is depicted in Figure 12 for a cone with a half top angle
of 45° and a cone rotation frequency of 4Hz and 5Hz. This figure shows clearly
that the cone top angle has a minor influence on the average residence time. At
a cone frequency of 4Hz, a small increase can be observed but for a cone
rotation frequency of 5Hz, the residence time nearly remains constant at
approximately one second. Therefore, the conclusion is justified that the cone
angle cannot be used effectively to change the average residence time of fluid
elements on the cone wall.

The influence of the length of the cone wall was also investigated to obtain
insight in the scalability of the cone. The corresponding results as computed
with the numerical model are presented in Figure 13.

It can be observed that, in a good approximation, the cumulative average
residence time of fluid elements on the cone wall is linearly dependent on the
length of the cone wall (i.e. #). Thus, when higher residence times are required
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Figure 12.

Influence of the cone top
angle on the average
residence time of

fluid elements on the
cone wall as computed
with numerical model
(n = 4Hz, ¢, = 0.1kg/s)
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Figure 13.

Influence of the length of
the cone wall on the
average residence time
of fluid elements

Oy = 45°, ¢y, = 0.1kg/s,
n = 4Hz)

due to for instance longer required processing times, it is useful to use a larger
cone. Of course, the size is limited by mechanical considerations.

As a concluding remark it can be stated that even with these small scale
cones of characteristic dimension of ~10cm to ~30cm, throughputs are possible
of more than 1kg/s without requiring very high cone rotation frequencies.
Besides, because the film thickness is very small (up to a few mm), the actual
reactor volume can be very low. So from this point of view this novel reactor
type can be considered as a high intensity reactor. However, it must be
emphasized that for processes that require or produce heat, also heat transfer
considerations should be taken into account before judging a rotating cone as a
high intensity reactor.

4. Conclusions

Numerical simulations have been developed for the description of liquid films
flowing over the conical surface of a rotating cone. The principal objective was
to compute the liquid residence times and to investigate the most important
parameters influencing it. The simulations were validated by comparing its
results with those obtained from experimental observation and approximate
analytical solutions of the model equations. Due to inaccuracies in pressure
interpolations near the free surface required in the VOF model, deviations of up
to 20 per cent were obtained. However, the numerical simulation has the
flexibility of incorporating complex changing variables and may be improved
by the introduction of a more refined algorithm. On the other hand, it turned
out that the combination of the decreasing layer thickness and the increasing
size of the numerical grid cells with increasing radial cone coordinate hampers
the numerical simulation of this system.

The velocity and pressure distributions in a liquid film flowing over the
conical surface of the rotating cone reactor have been derived by solving the
simplified conservation equations for mass and momentum analytically. To
this end, the range of cone rotation frequencies has been classified into three
different hydrodynamic regimes: very slow, intermediate and very high
angular cone velocities.
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The numerical simulations have been validated thoroughly by comparing the
computed thickness of the flowing film along the conical surface of the reactor
wall with the experimentally determined thickness. The agreement between the
simulations and the experiment was satisfactory.

The numerical simulations showed that the cone angle was of minor
influence on the residence time, while both the length of the cone wall and the
cone rotation frequency have a strong influence. Moreover, the simulations
revealed the enormous transport and pumping capacity of the rotating cone.
Even with the small-scale cones employed in this work, throughputs exceeding
1kg/s could be achieved.
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Appendix 1. Analytical solution at very low angular cone velocities
As stated in section 2.6.1, when the cone rotates at very low angular frequency, the system can be
described as a fluid that resides in a conical container rotating about its own vertical axis. Due to
the low rotation velocity, the hydrodynamic character of the flowing liquid shows resemblance
with the rotation of a rigid body. This problem is solved along the lines of the solution of a
rotating cylinder that rotates at a very low angular frequency presented by Bird et al. (1960).

Besides the assumptions mentioned earlier in section 2.6.1, the 7- and - velocity components
are assumed to be negligible with v, = 0 and vy = 0. When these assumptions are applied to the
partial differential mass conservation equation (4), it reduces to a trivial equation. The 7-, 6- and
¢-velocity components of the momentum conservation equation (5) (Bird et al., 1960) are thus
simplified to

2

e o _ Al-1
pr+ar+pgcosc9—0 ( )
cot 2 10p .
I +;%—pgsm0:0 (A1-2)
10 (00 p (1 Bsinthy)y .
72 Or <7 87) 7200 \sinf 00 =0 (AL-3)

The boundary conditions defining the solution of these equations are as follows. At the central
symmetry line, the ¢-velocity component must have a non-zero value. At the rotating cone wall,
the ¢-velocity component is equal to the rotation velocity of the wall (no-slip condition) which
rotates at a fixed angular frequency. The pressure at the free surface boundary located at the
central symmetry line is equal to the atmospheric pressure. The boundary conditions are:

(1) the central symmetry line for 8 = 0 with vy # 0;
(2) the cone wall for 0 = 0, with vy = Q7 sin 0,,; and

(3 the free surface at the central symmetry line for 7 = 7,gand 6 = O withp = p,.

As mentioned before, it is postulated that the fluid rotates as if it were a rigid body. Its ¢ velocity
component is thus given by

vy = Wrsinf (A1-4)

This equation can be rewritten into the dimensionless form as

vy  7rsind

—_— Al-5
QV:’\O 7s0 ( O)

If this expression for the ¢-velocity component is substituted into equation Al-la, the equation
for the pressure gradient in radial direction is given by



17)
a—i = p2rsin® 0 — pg cos b (A1-6)
which can be integrated to yield

b = 5% sin® 0 — pgrcos 0 + co(0), (A1-7)
where ¢y(6) is an integration constant depending only on 6. Substitution of this expression into
equation Al-2 and subsequent integration with respect to 6 yields

b= %pQZVZ sin @ — pgrcosf + ¢, (7), (A1-8)
where ¢,(7) is an integration constant depending only on 7. The equation for the pressure

distribution can now be obtained by combination of equations Al-7 and A1-8, and subsequent
enforcement of the boundary conditions

D = ba +3pQ% " sin® 0 + pg(rso — r cosb). (A1-9)
This expression can be transformed into the following two equivalent dimensionless forms
—pa 0% 7sin?0 0
p pdzz 7 sin +1_7cos (A1-10a)
pg75,0 8750 75,0
. 2
bp—pa [rsinf g 7 cos
=1 1- . Al1-10b
P5227§0 2( 750 * Q250 750 ( :

The location of the free surface boundary, either as a function of 7 or 6, can now be easily
obtained from the known free surface pressure boundary condition p = p, which yields the
following expressions for the location of the free surface

gcosf 2027, 1
s=————[1—4]/1 (1 ——— Al-11
& 02sin% 6 ( \/ + g cos? 0 ( a)
202 (3022
cosfs = i? —14+4/14+— (2 ! + 7’540) . (A1-11b)
Q2%r g g

Appendix 2. Analytical solution at very high angular cone velocities
At high angular frequencies, transport of fluid through the cone prevails, in contrast to the
previous situation. This problem has been studied earlier by Bruin (1969) nearly three decades
ago but unfortunately his paper contained a number of typographical errors. Therefore, we will
present the solution again here.

At very high angular cone velocities, the fluid layer thickness is very small with respect to the
characteristic dimension of the cone

‘:—0 << 1, (A2-1)

where d, represents the outer diameter of the cone. In addition to the basic assumptions
mentioned earlier, it is assumed that, as a result of the very thin fluid layer, the 6-velocity
component is negligible compared to the 7- and ¢-velocity components with vy << v, and
vp << vg4. Further, it is assumed that the pressure gradient in radial direction is negligible
compared to the other terms in the momentum equation in radial direction
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op
— =0. A2-2
o ( )
In the thin film approximation, the kinematic viscosity possesses a very low value, which allows
the following assumptions

4v
vy >>—, vy >> , Vg >>— (A2-3)
7 7 v

2
vy >> 7]/, vg >> (A2-4)

Furthermore, it can be argued that due to the high gradients of the radial velocity component in
the 6-direction the following assumption is allowed:
v, v,
<< .
or? 002

(A2-5)

The first order derivative of the radial velocity component with respect to 6 is larger than all
other first and second order derivatives of the #-component

ov,
first and second order derivatives of vy << % (A2-6)

The second order derivative of the ¢ velocity component v, with respect to 7 is negligible

compared to its second order derivative with respect to 0
vy e v,
or? 0% -

(A2-7)

Furthermore, it can be proven that (as a good approximation) the following term in the
¢-momentum conservation equation can be neglected

uwsm()zo‘ (A2-8)

7

Finally, because of the small film thickness, the assumption is made that the geometrical
functions are not a function of §. They are assumed to be equal to the corresponding geometrical
functions of 8,,, which represents half the top angle of the cone.

When the assumptions mentioned above are applied to the mass and momentum equations
(4) and (5), the following simplified set of equations is obtained

continuity:
ov, 10vy 2v,
oy 2P0 2T A2-
or + r 00 + r 0 ( 92)
7-momentum:
v 8%, O, vy v, Ui
—_— _ _—— S = A2*
2 862+Ur 8r+7 % 7+gcos€ 0 ( 9b)
f-momentum:

S o e ssinf = _
0 oo p gsind =0 (A2-9c)



¢-momentum:

v %04 vy

Vg OVy VU
2 06" B

“or Ty T

0. (A2-9d)

The corresponding boundary conditions are:
(1) atthe cone wall for7; <7 <7,and 6 = ,, withv, = vy = 0and v, = wrsin b,
(2)  at the fluid surface for 7; <r <r, and § = 6,,-d with 9v, /00 = 0, dv,,/ 90 = O(wrsinb) /00
and p = p,; and ood
(3) attheinletforr > -7 with2m? [ v,sin6df = Q.
A new coordinate d is defined as the di;tz(;lce perpendicular to the cone wall with —dd = 6.

For convenience, Bruin (1969) defined the following dimensionless parameters:
r-velocity component:

Uy
= A2-1
v wr sin Oy, ( 0a)
#-velocity component:
V= (A2-10D)
() 2
¢-velocity component:
Vs
= A2-10
W wr sin Oy ( c)
pressure:
J R et T (A2-10d)
p(rw) 2 sin Oy
r-coordinate:
n= ; (A2-10e)
#-coordinate:
1
> (f) ky (A2-10f)
14

Further, the Froude number Fr is defined by equation (16a), and the following dimensionless
numbers were introduced

1
wnWh 1

= (= A2-11¢
© <w> 7, 8in Oy, ( a)
Qi - @ _— (A2-11b)

2172 sin? B, () 2
Additionally, a scaled dimensionless rotation frequency number 2 was introduced

W W, sin Oy, (A2-12)

! Uf’ |7':7‘“ !
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In this equation, the term |v,,\,:,,o\ represents the velocity in the 7-direction averaged over the
entire cross section of the layer thickness. Combination of equations (A2-10a-c) with equation
(A2-12) results in the following scaled dimensionless velocities

U = | |U’ =QnU (A2—13a)
Uy r=r,
o Y (v 1) B )
'= [orl—s | (w) 7o Sin Oy nv = eV (A2-13b)
lr=r,

By substituting these scaled dimensionless variables into the set of conservation equations for
mass and momentum (equations (A2-9a-d)), the following set of dimensionless mass and
momentum conservation equations is obtained
20U n oV .
_— —+2U0=0 A2-14c¢
n on  Qsinby do + ( 2)

)y U . oU nvoou 99 . -, PQcot Oy
sndy, o0 Y oy Qsmon oo TET QW = W? 4 T =0 (A2-14D)
ou 1 P 5 S 77 Q% tan b,
200 — 2Q2__ _ ZQ2 oMW — 2 wo_ A9-14.
QO tan 6y, % +17 cosf. 0o 7+ 20OW — W — 0 o)
W OW_ g0 VW i amoir ~o, (A2-14d)

sin @,, 0o? K on ' Qsinby, do

with the following scaled dimensionless boundary conditions: for the no-slip condition on the
wall

n>1Ao=0= U=0AV=0nAW=0, (A2-15)

for the free-slip condition at the surface of the liquid

U _ oA _gnp—o (A2-16)

> =6t
r>1 ANo=6" = % %

and for the mass conservation

6{
n>1 = / Udo = n0Q; . (A2-17)
o=0

Bruin (1969) argued that at very high cone velocities, corresponding to the condition Q > > 1,
terms containing Q2 tend to dominate with respect to the other terms in equations (A2-14a-d). He
considered a value of 20 as sufficiently high to ascertain this approximation. The set of equations
can then be further simplified to (in terms of U, V, Wand P)

ou 1 ov

"y " o go T3V =0 (A2-18a)




1 d*U cot O
" sind, 902 Fr = 0 (A2-18b)
1 oP tan Oy
" cos Oy O oc ~  Fr 0 (A2-18c)
! 82—W+2U =0 (A2-18d)
sin @,, 002 -
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Equations (A2-18a-d) are solved by simple integration. By applying the corresponding boundary
conditions (equations (A2-15) and (A2-16)), the following approximate analytical solutions, valid
for very high angular cone velocities (i.e. Q2 >>1), are obtained:

r-velocity component:
Uln.o) = (sinfy - CO;f‘V )(6%0 — Yyo?) (A2-19a)

#-velocity component:
W(n,0) = —Yy(sin® 6, — “;TZE“')((W S 1ot —2(6%)0) (A2-19b)

¢-velocity component:
V(n,o) = (3sin® 0, % )15 0® — Yyo) (A2-19¢)

pressure:
P(,0) = (cosfy + Si;fw )6* — o). (A2-19d)
The dimensionless film thickness

5t = (%)l/zds (A2-20)

can be derived from the conservation of mass over a cross section of the liquid film (equation
(A2-17))

(A2-21)

This solution presented above for the film thickness differs slightly from the solution as
presented by Bruin (1969).

Appendix 3. Expressions

If»u (Uv 6+)
_ 1 sin2A6"(cosh Ao cos Ao 4 sinh Ao sin Ao) + sinh 267 (sinh Ao sin Ao — cosh Ao cos Ao)
IR cosh 2X\6T + cos 2\6F
+ I _il_ ;y (sinh Ao cos Ag — cosh Ao sin Ao)

(A3-1)



HFF

11,5 2(n,6%) = AN e 5 (A3-2)
o3P (st - (imge)’)
]{{r (O’7 (SJr)
1 (cosh2Xé6" cos2A6T — sinh 206 sin 226" + 1)(cosh Ao cos Ao + sinh Ao sin Ao
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1+A (cosh 26 + cos2X6T)
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Ir(0,67)
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= T N (cosh 20" £ cos2h6) (cosh Ao cos Ao — cosh A6 cos A6 ™)
4 h2 + 41 2 +
sinh 267 + sin 216 (sinh Ao sin Ao — sinh A6 sin A6T) (A3-4)

(1 4+ A)(cosh 2A6F + cos 2A6T)

1
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1+ A
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